In this work, we study a novel class of projection-based algorithms for linearly constrained problems (LCPs) which have a lot of applications in statistics, optimization, and machine learning. Conventional primal gradient-based methods for LCPs call a projection after each (stochastic) gradient descent, resulting in that the required number of projections equals that of gradient descents (or total iterations). Motivated by the recent progress in distributed optimization, we propose the delayed projection technique that calls a projection once for a while, lowering the projection frequency and improving the projection efficiency. Accordingly, we devise a series of stochastic methods for LCPs using the technique, including a variance reduced method and an accelerated one. We theoretically show that it is feasible to improve projection efficiency in both strongly convex and generally convex cases. Our analysis is simple and unified and can be easily extended to other methods using delayed projections. When applying our new algorithms to federated optimization, a newfangled and privacy-preserving subfield in distributed optimization, we obtain not only a variance reduced federated algorithm with convergence rates better than previous works, but also the first accelerated method able to handle data heterogeneity inherent in federated optimization.


翻译:在这项工作中,我们研究了一种针对线性限制问题的新颖的基于预测的算法(LCP),这种算法在统计、优化和机器学习方面有许多应用。基于LCP的常规原始梯度方法要求在每个(随机)梯度下降后进行预测,结果所需的预测数等于梯度下降(或总迭代)数。在分配优化方面最近的进展推动下,我们提议了一种延迟的预测技术,需要对一次的预测进行一次预测,降低预测频率并改进预测效率。因此,我们设计了一系列使用该技术的LCP的随机分析方法,包括一种降低差异的方法和加速的方法。我们理论上表明,在强烈的 convex和一般的 convex情况下提高预测效率是可行的。我们的分析简单而统一,而且很容易扩大到使用延迟的预测的其他方法。在将我们的新算法应用于分流式优化、一种新缠绕和保持隐私的子领域时,我们在分配优化时,不仅获得了一种与比先前的同步率更好的压缩的节制方法,而且还获得了一种加速的方法。

0
下载
关闭预览

相关内容

最优化是应用数学的一个分支,主要指在一定条件限制下,选取某种研究方案使目标达到最优的一种方法。最优化问题在当今的军事、工程、管理等领域有着极其广泛的应用。
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年3月5日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员