Multimedia anomaly datasets play a crucial role in automated surveillance. They have a wide range of applications expanding from outlier object/ situation detection to the detection of life-threatening events. This field is receiving a huge level of research interest for more than 1.5 decades, and consequently, more and more datasets dedicated to anomalous actions and object detection have been created. Tapping these public anomaly datasets enable researchers to generate and compare various anomaly detection frameworks with the same input data. This paper presents a comprehensive survey on a variety of video, audio, as well as audio-visual datasets based on the application of anomaly detection. This survey aims to address the lack of a comprehensive comparison and analysis of multimedia public datasets based on anomaly detection. Also, it can assist researchers in selecting the best available dataset for bench-marking frameworks. Additionally, we discuss gaps in the existing dataset and future direction insights towards developing multimodal anomaly detection datasets.
翻译:多媒体异常数据集在自动监视中发挥着关键作用,它们具有广泛的应用范围,从外部物体/情况探测到威胁生命的事件的探测。这个领域在15年多的时间里得到了巨大的研究兴趣,因此产生了越来越多的专用于异常行动和物体探测的数据集。利用这些公共异常数据集,研究人员能够利用同样的输入数据生成和比较各种异常探测框架。本文根据异常探测的应用,对各种视频、视听数据集进行了全面调查。这一调查旨在解决基于异常探测的多媒体公共数据集缺乏全面比较和分析的问题。此外,它还可以协助研究人员选择现有的最佳数据数据集,以及今后关于开发多式异常探测数据集的方向见解。此外,我们讨论了现有数据集的差距和如何开发多式异常探测数据集。