The sixth assessment of the international panel on climate change (IPCC) states that "cumulative net CO2 emissions over the last decade (2010-2019) are about the same size as the 11 remaining carbon budget likely to limit warming to 1.5C (medium confidence)." Such reports directly feed the public discourse, but nuances such as the degree of belief and of confidence are often lost. In this paper, we propose a formal account for allowing such degrees of belief and the associated confidence to be used to label arguments in abstract argumentation settings. Differently from other proposals in probabilistic argumentation, we focus on the task of probabilistic inference over a chosen query building upon Sato's distribution semantics which has been already shown to encompass a variety of cases including the semantics of Bayesian networks. Borrowing from the vast literature on such semantics, we examine how such tasks can be dealt with in practice when considering uncertain probabilities, and discuss the connections with existing proposals for probabilistic argumentation.
翻译:气候变化国际小组(IPCC)的第六次评估指出,“过去十年(2010-2019年)累计净二氧化碳排放量与可能将变暖限制在1.5C(中等信任)的11个剩余碳预算大致相同。 ”这些报告直接为公众讨论提供了素材,但信仰和信心的程度等细微差别往往会丢失。在本文中,我们提出了一个正式的描述,允许在抽象的论证环境中用这种程度的信仰和相关的信任来标注各种论点。不同于其他概率论,我们侧重于在佐藤分布语义上选择的查询的概率推论,而这种推论已经表明包括了包括巴伊西亚网络的语义学在内的各种案例。从关于这种语义学的大量文献中借用关于这种语义学的文献,我们研究在考虑不确定的概率时如何在实践中处理这种任务,并讨论与现有关于概率论的建议之间的联系。