Covariate adjustment has the potential to increase power in the analysis of randomised trials, but mis-specification of the adjustment model could cause error. We explore what error is possible when the adjustment model omits a covariate by randomised treatment interaction, in a setting where the covariate is perfectly balanced between randomised treatments. We use mathematical arguments and analyses of single hypothetical data sets. We show that analysis by a generalised linear model with the canonical link function leads to no error under the null -- that is, if treatment effect is truly zero under the adjusted model then it is also zero under the unadjusted model. However, using non-canonical link functions does not give this property and leads to potentially important error under the null. The error is present even in large samples and hence constitutes bias. We conclude that covariate adjustment analyses of randomised trials should avoid non-canonical links. If a marginal risk difference is the target of estimation then this should not be estimated using an identity link; alternative preferable methods include standardisation and inverse probability of treatment weighting.
翻译:共变调整有可能增加随机试验分析的能量,但调整模型的偏差特性可能造成错误。我们探讨当调整模型在任意处理处理的完全平衡的环境下,通过随机处理的相互作用忽略了任意处理相互作用的共变时,哪些错误是可能的。我们使用数学参数和单一假设数据集的分析。我们显示,由通用线性模型和典型链接功能进行的分析不会在无效状态下造成错误 -- -- 也就是说,如果在调整后的模型下治疗效果确实为零,那么在未调整的模型下治疗效果也是零。然而,使用非癌症联系功能不会赋予这一属性,并导致无效状态下的潜在重大错误。错误甚至存在于大型样本中,因此构成偏差。我们的结论是,随机试验的共变调整分析应该避免非癌症联系。如果边际风险差异是估算的目标,则不应使用身份链接来估计;其他更可取的方法包括标准化和反偏差的治疗权重。