3D perception is a critical problem in autonomous driving. Recently, the Bird-Eye-View (BEV) approach has attracted extensive attention, due to low-cost deployment and desirable vision detection capacity. However, the existing models ignore a realistic scenario during the driving procedure, i.e., one or more view cameras may be failed, which largely deteriorates the performance. To tackle this problem, we propose a generic Masked BEV (M-BEV) perception framework, which can effectively improve robustness to this challenging scenario, by random masking and reconstructing camera views in the end-to-end training. More specifically, we develop a novel Masked View Reconstruction (MVR) module for M-BEV. It mimics various missing cases by randomly masking features of different camera views, then leverages the original features of these views as self-supervision, and reconstructs the masked ones with the distinct spatio-temporal context across views. Via such a plug-and-play MVR, our M-BEV is capable of learning the missing views from the resting ones, and thus well generalized for robust view recovery and accurate perception in the testing. We perform extensive experiments on the popular NuScenes benchmark, where our framework can significantly boost 3D perception performance of the state-of-the-art models on various missing view cases, e.g., for the absence of back view, our M-BEV promotes the PETRv2 model with 10.3% mAP gain.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
15+阅读 · 2019年9月11日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员