Sparse linear regression is the well-studied inference problem where one is given a design matrix $\mathbf{A} \in \mathbb{R}^{M\times N}$ and a response vector $\mathbf{b} \in \mathbb{R}^M$, and the goal is to find a solution $\mathbf{x} \in \mathbb{R}^{N}$ which is $k$-sparse (that is, it has at most $k$ non-zero coordinates) and minimizes the prediction error $||\mathbf{A} \mathbf{x} - \mathbf{b}||_2$. On the one hand, the problem is known to be $\mathcal{NP}$-hard which tells us that no polynomial-time algorithm exists unless $\mathcal{P} = \mathcal{NP}$. On the other hand, the best known algorithms for the problem do a brute-force search among $N^k$ possibilities. In this work, we show that there are no better-than-brute-force algorithms, assuming any one of a variety of popular conjectures including the weighted $k$-clique conjecture from the area of fine-grained complexity, or the hardness of the closest vector problem from the geometry of numbers. We also show the impossibility of better-than-brute-force algorithms when the prediction error is measured in other $\ell_p$ norms, assuming the strong exponential-time hypothesis.


翻译:线性回归是人们深思熟虑的推论问题, 一个人在其中得到设计矩阵 $\ mathbb{R\M\time N} $\ mathb{R{b} $ 和响应矢量$\ mathbb{R ⁇ M} 和响应矢量$\ mathbb{R{\\M$, 目标是找到一个 $\ mathb{{x} 和 \ mathbbb{N} 的解决方案 $\ mathbbf{A} 和最小化预测错误 $&mathbbbb{M\timen} N} 。 一方面, 问题为 $\ mathbrb{N} $- hard 。 告诉我们, 除非$mathcalbal{P} =\ mathcal} =\ mathcal} $。 另一方面, 最知名的预测错误从 $maxblfrealfral_ral_ral_ral_rough 数字 也可以 。

0
下载
关闭预览

相关内容

线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。其表达形式为y = w'x+e,e为误差服从均值为0的正态分布。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
已删除
AI掘金志
7+阅读 · 2019年7月8日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月29日
Arxiv
0+阅读 · 2021年7月29日
Arxiv
0+阅读 · 2021年7月28日
Arxiv
0+阅读 · 2021年7月28日
Arxiv
0+阅读 · 2021年7月28日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
已删除
AI掘金志
7+阅读 · 2019年7月8日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年7月29日
Arxiv
0+阅读 · 2021年7月29日
Arxiv
0+阅读 · 2021年7月28日
Arxiv
0+阅读 · 2021年7月28日
Arxiv
0+阅读 · 2021年7月28日
Arxiv
3+阅读 · 2018年2月24日
Top
微信扫码咨询专知VIP会员