FinTech platforms facilitated by digital payments are watching growth rapidly, which enable the distribution of mutual funds personalized to individual investors via mobile Apps. As the important intermediation of financial products investment, these platforms distribute thousands of mutual funds obtaining impressions under guaranteed delivery (GD) strategy required by fund companies. Driven by the profit from fund purchases of users, the platform aims to maximize each transaction amount of customers by promoting mutual funds to these investors who will be interested in. Different from the conversions in traditional advertising or e-commerce recommendations, the investment amount in each purchase varies greatly even for the same financial product, which provides a significant challenge for the promotion recommendation of mutual funds. In addition to predicting the click-through rate (CTR) or the conversion rate (CVR) as in traditional recommendations, it is essential for FinTech platforms to estimate the customers' purchase amount for each delivered fund and achieve an effective allocation of impressions based on the predicted results to optimize the total expected transaction value (ETV). In this paper, we propose an ETV optimized customer allocation framework (EOCA) that aims to maximize the total ETV of recommended funds, under the constraints of GD dealt with fund companies. To the best of our knowledge, it's the first attempt to solve the GD problem for financial product promotions based on customer purchase amount prediction. We conduct extensive experiments on large scale real-world datasets and online tests based on LiCaiTong, Tencent wealth management platform, to demonstrate the effectiveness of our proposed EOCA framework.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员