Generative models learn the distribution of data from a sample dataset and can then generate new data instances. Recent advances in deep learning has brought forth improvements in generative model architectures, and some state-of-the-art models can (in some cases) produce outputs realistic enough to fool humans. We survey recent research at the intersection of security and privacy and generative models. In particular, we discuss the use of generative models in adversarial machine learning, in helping automate or enhance existing attacks, and as building blocks for defenses in contexts such as intrusion detection, biometrics spoofing, and malware obfuscation. We also describe the use of generative models in diverse applications such as fairness in machine learning, privacy-preserving data synthesis, and steganography. Finally, we discuss new threats due to generative models: the creation of synthetic media such as deepfakes that can be used for disinformation.


翻译:生成模型从抽样数据集中学会数据的分配,然后可以产生新的数据实例。最近深层次学习的进展使基因模型结构有了改进,一些最先进的模型(在某些情况下)可以产生现实的、足以愚弄人类的产出。我们调查最近在安全和隐私以及基因模型交汇处的研究。我们特别讨论了在对抗机器学习、帮助现有攻击的自动化或增强现有攻击以及作为入侵探测、生物鉴别和恶意软件模糊等情况下防御的构件使用基因模型的问题。我们还描述了在机器学习的公平性、隐私保护数据合成和摄像学等多种应用中使用基因模型的情况。最后,我们讨论了由于基因模型带来的新威胁:创建合成媒体,例如可用于否认信息的深晶体等。

0
下载
关闭预览

相关内容

在机器学习中,生成模型可以用来直接对数据建模(例如根据某个变量的概率密度函数进行数据采样),也可以用来建立变量间的条件概率分布。条件概率分布可以由生成模型根据贝叶斯定理形成。
专知会员服务
33+阅读 · 2020年12月28日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
开发者应当了解的18套机器学习平台
深度学习世界
5+阅读 · 2018年8月14日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Arxiv
30+阅读 · 2021年8月18日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
VIP会员
相关VIP内容
专知会员服务
33+阅读 · 2020年12月28日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
开发者应当了解的18套机器学习平台
深度学习世界
5+阅读 · 2018年8月14日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Top
微信扫码咨询专知VIP会员