One of the promising applications of early quantum computers is the simulation of quantum systems. Variational methods for near-term quantum computers, such as the variational quantum eigensolver (VQE), are a promising approach to finding ground states of quantum systems relevant in physics, chemistry, and materials science. These approaches, however, are constrained by the effects of noise as well as the limited quantum resources of near-term quantum hardware, motivating the need for quantum error mitigation techniques to reduce the effects of noise. Here we introduce $\textit{neural error mitigation}$, a novel method that uses neural networks to improve estimates of ground states and ground-state observables obtained using VQE on near-term quantum computers. To demonstrate our method's versatility, we apply neural error mitigation to finding the ground states of H$_2$ and LiH molecular Hamiltonians, as well as the lattice Schwinger model. Our results show that neural error mitigation improves the numerical and experimental VQE computation to yield low-energy errors, low infidelities, and accurate estimations of more-complex observables like order parameters and entanglement entropy, without requiring additional quantum resources. Additionally, neural error mitigation is agnostic to both the quantum hardware and the particular noise channel, making it a versatile tool for quantum simulation. Applying quantum many-body machine learning techniques to error mitigation, our method is a promising strategy for extending the reach of near-term quantum computers to solve complex quantum simulation problems.


翻译:早期量子计算机有希望的应用之一是模拟量子系统。短期量子计算机,例如变量量量子仪(VQE)的变异方法是一种很有希望的方法,可以找到与物理、化学和材料科学相关的量子系统的地面状态。然而,这些方法受到噪音的影响以及短期量子硬件有限的量子资源的限制,这就需要量子误差减缓技术来减少噪音的影响。我们在这里引入了美元(textit{neural 错误缓减 ) 美元,这是使用神经网络来改进对近期量子计算机使用VQE获得的地面状态和地面状态观测的估计数的新方法。为了展示我们的方法的多功能性,我们运用神经误差来寻找H$2美元和LiH分子汉密尔顿的地面状态,以及拉蒂斯·施温特模型。我们的结果显示,神经误降能和实验性VQE的计算方法可以产生低能量误差,低纤维性,以及精确估计近期量子值计算机在近期量子计算机上获得的复杂度观察值观察值观察值观测的估计数。我们的方法的多功能误差,我们用来寻找一个更精确的量子轨道的量子轨道的量子值的量子值的计算方法, 。要求增加的量子级的量子值的量子值的计算方法,也就是的计算方法是要求一个更量子级的量子的量子的量子体的研的计算方法, 的计算方法, 的研的研的研的计算方法, 。要求一个额外的量子的计算方法,要求一个更的量子的量子法的量子的研算法。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2021年6月30日
专知会员服务
50+阅读 · 2020年12月14日
【ICML2020】图神经网络基准,53页ppt,NUS-Xavier Bresson
专知会员服务
57+阅读 · 2020年7月18日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Quantum belief function
Arxiv
0+阅读 · 2021年7月8日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
8+阅读 · 2018年11月27日
VIP会员
相关资讯
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员