Microcalcifications are small deposits of calcium that appear in mammograms as bright white specks on the soft tissue background of the breast. Microcalcifications may be a unique indication for Ductal Carcinoma in Situ breast cancer, and therefore their accurate detection is crucial for diagnosis and screening. Manual detection of these tiny calcium residues in mammograms is both time-consuming and error-prone, even for expert radiologists, since these microcalcifications are small and can be easily missed. Existing computerized algorithms for detecting and segmenting microcalcifications tend to suffer from a high false-positive rate, hindering their widespread use. In this paper, we propose an accurate calcification segmentation method using deep learning. We specifically address the challenge of keeping the false positive rate low by suggesting a strategy for focusing the hard pixels in the training phase. Furthermore, our accurate segmentation enables extracting meaningful statistics on clusters of microcalcifications.


翻译:微量计算是乳房X射线图中作为乳房软组织背景上的亮白斑点出现的少量钙矿床。微量计算可能是西图乳腺癌中Ductal癌的一个独特迹象,因此准确的检测对诊断和筛查至关重要。人工检测乳房X光图中的这些微小钙残余物既耗时又容易出错,即使是专家放射科医生也是如此,因为这些微量计算是很小的,很容易被忽略。现有的用于检测和分解微量化的计算机化算法往往会受到高假阳性率的影响,阻碍其广泛使用。在本文件中,我们建议采用精确的计算分解方法,利用深层学习,以精确的计算分解法。我们具体解决使假正率保持低的挑战,方法是提出在培训阶段集中硬像素的战略。此外,我们准确的分解方法能够提取关于微量化集的有意义的统计数据。

1
下载
关闭预览

相关内容

多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
专知会员服务
117+阅读 · 2019年12月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
已删除
将门创投
4+阅读 · 2017年12月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
126+阅读 · 2020年9月6日
Arxiv
15+阅读 · 2019年6月25日
VIP会员
相关VIP内容
多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
专知会员服务
117+阅读 · 2019年12月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
已删除
将门创投
4+阅读 · 2017年12月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员