Despite the high quality performance of the deep neural network in real-world applications, they are susceptible to minor perturbations of adversarial attacks. This is mostly undetectable to human vision. The impact of such attacks has become extremely detrimental in autonomous vehicles with real-time "safety" concerns. The black-box adversarial attacks cause drastic misclassification in critical scene elements such as road signs and traffic lights leading the autonomous vehicle to crash into other vehicles or pedestrians. In this paper, we propose a novel query-based attack method called Modified Simple black-box attack (M-SimBA) to overcome the use of a white-box source in transfer based attack method. Also, the issue of late convergence in a Simple black-box attack (SimBA) is addressed by minimizing the loss of the most confused class which is the incorrect class predicted by the model with the highest probability, instead of trying to maximize the loss of the correct class. We evaluate the performance of the proposed approach to the German Traffic Sign Recognition Benchmark (GTSRB) dataset. We show that the proposed model outperforms the existing models like Transfer-based projected gradient descent (T-PGD), SimBA in terms of convergence time, flattening the distribution of confused class probability, and producing adversarial samples with least confidence on the true class.


翻译:尽管现实世界应用中深度神经网络的高质量表现,但它们很容易受到对抗性攻击的轻微干扰,这大多是人类视觉所无法察觉的。这种攻击的影响在具有实时“安全”关切的自治车辆中变得极为有害。黑箱对抗性攻击在关键场景要素,如路标和交通灯导致自主车辆撞毁其他车辆或行人时,造成了严重的分类错误。在本文中,我们提议了一种新型的基于查询的攻击方法,称为变换简易黑箱攻击(M-SIMBA),以克服转移式攻击方法中使用白箱源的问题。此外,在简单的黑箱攻击(SIMBA)中,这类攻击的延迟趋同问题通过尽可能减少最混乱的阶级损失来解决,这是模型所预测的错误阶级,而不是尽量减少正确阶级的损失。我们评价了拟议的德国交通信号识别基准(GTSRB)数据集(MTSRB)的绩效。我们表明,拟议的模型比现有的模型更差,如转移式黑箱攻击式攻击(SimBA-Cremodalimalimalislation), exim-rofile eximbilviolview(Sim-BAlist sliflock-BAliflevation), exislevationslevolviolvioltimismismlity(Slvilvilvil),我们评估了Sim), 和Sim-D的模型(Glibiltymlislislismismislislislisl)的模型,我们评估了模拟制制制的模型的模型比。

0
下载
关闭预览

相关内容

在科学,计算和工程学中,黑盒是一种设备,系统或对象,可以根据其输入和输出(或传输特性)对其进行查看,而无需对其内部工作有任何了解。 它的实现是“不透明的”(黑色)。 几乎任何事物都可以被称为黑盒:晶体管,引擎,算法,人脑,机构或政府。为了使用典型的“黑匣子方法”来分析建模为开放系统的事物,仅考虑刺激/响应的行为,以推断(未知)盒子。 该黑匣子系统的通常表示形式是在该方框中居中的数据流程图。黑盒的对立面是一个内部组件或逻辑可用于检查的系统,通常将其称为白盒(有时也称为“透明盒”或“玻璃盒”)。
专知会员服务
44+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月9日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员