Electrochemical impedance spectra is a widely used tool for characterization of fuel cells and electrochemical conversion systems in general. When applied to the on-line monitoring in context of in-field applications, the disturbances, drifts and sensor noise may cause severe distortions in the evaluated spectra, especially in the low-frequency part. Failure to account for the random effects can implicate difficulties in interpreting the spectra and misleading diagnostic reasoning. In the literature, this fact has been largely ignored. In this paper, we propose a computationally efficient approach to the quantification of the spectral uncertainty by quantifying the uncertainty of the equivalent circuit model (ECM) parameters by means of the Variational Bayes (VB) approach. To assess the quality of the VB posterior estimates, we compare the results of VB approach with those obtained with the Markov Chain Monte Carlo (MCMC) algorithm. Namely, MCMC algorithm is expected to return accurate posterior distributions, while VB approach provides the approximative distributions. By using simulated and real data we show that VB approach generates approximations, which although slightly over-optimistic, are still pretty close to the more realistic MCMC estimates. A great advantage of the VB method for online monitoring is low computational load, which is several orders of magnitude lighter than that of MCMC. The performance of VB algorithm is demonstrated on a case of ECM parameters estimation in a 6 cell solid-oxide fuel cell stack. The complete numerical implementation for recreating the results can be found at https://repo.ijs.si/lznidaric/variational-bayes-supplementary-material.


翻译:电化学阻碍电化学光谱是一种广泛使用的工具,用于对燃料电池和一般电化学转换系统进行定性。当应用于现场应用的在线监测时,扰动、漂移和传感器噪音可能会对评估光谱特别是低频部分的光谱造成严重扭曲。不说明随机效应可能会在解释光谱和误导性诊断推理方面造成困难。在文献中,这一事实在很大程度上被忽略了。在本文中,我们提出一种计算高效的方法,通过对等电路模型参数(ECM)参数的不确定性进行量化,通过挥发性易变易变易变值(VB)方法进行量化。为了评估VB的外观估计质量,我们将VB方法的结果与Markov Call Monte Carlo(MC)的算法进行比较。也就是说,MC的算法将返回准确的红外线分布,而VB方法提供类似的固体分布。通过模拟和真实的数据,我们发现VB方法可以产生近似的近似值,虽然微缩缩缩缩缩缩的 EMC结果是较真实的内值,但是对A-MC值值值的精确度的计算法是较轻的计算法,对A-MC的计算结果的计算是较轻的计算结果的精确的计算是较轻的计算。

0
下载
关闭预览

相关内容

【干货书】机器学习优化,509页pdf
专知会员服务
148+阅读 · 2021年2月26日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
53+阅读 · 2020年9月7日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
74+阅读 · 2020年5月5日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
3+阅读 · 2018年4月10日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
VIP会员
相关VIP内容
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
3+阅读 · 2018年4月10日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员