Creating and monitoring competitive and cost-effective pay-per-click advertisement campaigns through the web-search channel is a resource demanding task in terms of expertise and effort. Assisting or even automating the work of an advertising specialist will have an unrivaled commercial value. In this paper we propose a methodology, an architecture, and a fully functional framework for semi- and fully- automated creation, monitoring, and optimization of cost-efficient pay-per-click campaigns with budget constraints. The campaign creation module generates automatically keywords based on the content of the web page to be advertised extended with corresponding ad-texts. These keywords are used to create automatically the campaigns fully equipped with the appropriate values set. The campaigns are uploaded to the auctioneer platform and start running. The optimization module focuses on the learning process from existing campaign statistics and also from applied strategies of previous periods in order to invest optimally in the next period. The objective is to maximize the performance (i.e. clicks, actions) under the current budget constraint. The fully functional prototype is experimentally evaluated on real world Google AdWords campaigns and presents a promising behavior with regards to campaign performance statistics as it outperforms systematically the competing manually maintained campaigns.


翻译:通过网络搜索渠道创建和监测竞争性和成本效益高的按职定薪广告运动是一项在专门知识和努力方面资源紧缺的任务。协助甚至使广告专家的工作自动化,将具有无可比拟的商业价值。在本文件中,我们提出了一种方法、一个架构和一个功能齐全的框架,用于半自动和完全自动化地创建、监测和优化具有预算限制的按职定薪酬运动。运动创建模块根据网页内容自动生成关键词,并随相应文本发布。这些关键词被用来自动创建配有适当价值的运动。这些关键词被用于自动创建具有适当价值的运动。这些运动被上传到拍卖商平台并开始运行。优化模块侧重于从现有运动统计中学习过程,以及从以往各期应用的战略中学习,以便在下一个时期进行最佳投资。目标是在目前预算限制下最大限度地提高业绩(即点击、行动)。完全功能化的原型在实际世界谷歌AdWord运动中进行实验性评估,并展示出在运动业绩统计方面有希望的行为,因为它系统地展示了竞合的手动运动。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Adversarial Metric Attack for Person Re-identification
Arxiv
7+阅读 · 2018年6月8日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员