Blood Glucose (BG) control involves keeping an individual's BG within a healthy range through extracorporeal insulin injections is an important task for people with type 1 diabetes. However,traditional patient self-management is cumbersome and risky. Recent research has been devoted to exploring individualized and automated BG control approaches, among which Deep Reinforcement Learning (DRL) shows potential as an emerging approach. In this paper, we use an exponential decay model of drug concentration to convert the formalization of the BG control problem, which takes into account the delay and prolongedness of drug effects, from a PAE-POMDP (Prolonged Action Effect-Partially Observable Markov Decision Process) to a MDP, and we propose a novel multi-step DRL-based algorithm to solve the problem. The Prioritized Experience Replay (PER) sampling method is also used in it. Compared to single-step bootstrapped updates, multi-step learning is more efficient and reduces the influence from biasing targets. Our proposed method converges faster and achieves higher cumulative rewards compared to the benchmark in the same training environment, and improves the time-in-range (TIR), the percentage of time the patient's BG is within the target range, in the evaluation phase. Our work validates the effectiveness of multi-step reinforcement learning in BG control, which may help to explore the optimal glycemic control measure and improve the survival of diabetic patients.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员