We propose to use channel inversion power control (CIPC) to achieve one-way ultra-reliable and low-latency communications (URLLC), where only the transmission in one direction requires ultra reliability and low latency. Based on channel reciprocity, our proposed CIPC schemes guarantee the power of received signal that is used to decode the information to be a constant value $Q$, by varying the transmit signal and power, which relaxes the assumption of knowing channel state information (CSI) at the user. Thus, the CIPC schemes eliminate the overhead of CSI feedback, reduce communication latency, and explore the benefits of multiple antennas to significantly improve transmission reliability. We derive analytical expressions for the packet loss probability of the proposed CIPC schemes, based on which we determine a closed interval and a convex set for optimizing $Q$ in CIPC with imperfect and perfect channel reciprocity, respectively. Our results show that CIPC is an effective means to achieve one-way URLLC. The tradeoff among reliability, latency, and required resources (e.g., transmit antennas) is further revealed, which provides novel principles for designing one-way URLLC systems.


翻译:我们提议利用频道反向功率控制(CIPC)实现单向超可靠和低纬度通信(URLLC),只有向一个方向的传输才要求超可靠和低潜值。基于频道对等,我们提议的CIPC计划通过改变传输信号和功率来保证接收信号的力量,该信号用来解码信息为不变值$Q美元,从而降低用户对了解频道状态信息(CSI)的假设。因此,CIPC计划消除了CSI反馈的间接费用,减少了通信时长,并探索了多个天线的好处,以大幅提高传输可靠性。我们根据这些信号,我们分别确定了封闭间隔和为在CIPC中以不完善和完美的频道对等方式优化美元而设定的连接值。我们的结果表明,CIPC是实现单向 URLC的有效手段。 可靠性、延迟度和所需资源(例如传输天线)之间的交易得到了进一步披露,为设计单向ALC系统提供了新的原则。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
31+阅读 · 2021年6月30日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员