The key problem for autonomous robots is how to navigate through complex, obstacle-filled environments, without colliding into obstacles. The navigation problem is split into generating a global reference path to the goal and then using a local planner to track the reference path and avoid obstacles by generating velocity and steering references for the robot control system to execute. This paper presents a hybrid local planning architecture that combines a classic path following algorithm with a deep reinforcement learning agent. The novel "modification planner" uses the path follower to track the global plan and the deep reinforcement learning agent to modify the references generated by the path follower to avoid obstacles. Importantly, our architecture does not require an updated obstacle map and only 10 laser range finders to avoid obstacles. The modification planner is evaluated in the context of F1/10th autonomous racing and compared to a mapless navigation baseline, the Follow the Gap Method and an optimisation based planner. The results show that the modification planner can achieve faster average times compared to the baseline mapless navigation planner and a 94% success rate which is similar to the baseline.
翻译:自主机器人的关键问题是如何在不碰撞障碍的情况下在复杂、 障碍填充的环境中航行。 导航问题被分割为生成一个目标的全球参考路径, 然后使用一个本地规划器来跟踪参考路径, 并避免障碍, 为机器人控制系统执行生成速度和方向引用。 本文展示了一个混合的本地规划架构, 将经典路径与一个深强化学习剂结合到算法中。 新的“ 修改规划器” 使用路径跟踪器跟踪全球计划, 并使用深强化学习剂修改路径跟踪器生成的引用, 以避免障碍。 重要的是, 我们的建筑不需要更新障碍图, 并且只有10个激光范围查找器来避免障碍 。 修改规划器是在F1/ 10 自动赛车的背景下评估的, 并与无地图导航基线、 差距方法和基于优化的规划器进行比较。 结果显示, 修改规划器可以比基线无地图导航仪更快的平均时间, 和类似基线的94%的成功率 。