Applications with low data reuse and frequent irregular memory accesses, such as graph or sparse linear algebra workloads, fail to scale well due to memory bottlenecks and poor core utilization. While prior work with prefetching, decoupling, or pipelining can mitigate memory latency and improve core utilization, memory bottlenecks persist due to limited off-chip bandwidth. Approaches doing processing in-memory (PIM) with Hybrid Memory Cube (HMC) overcome bandwidth limitations but fail to achieve high core utilization due to poor task scheduling and synchronization overheads. Moreover, the high memory-per-core ratio available with HMC limits strong scaling. We introduce Dalorex, a hardware-software co-design that achieves high parallelism and energy efficiency, demonstrating strong scaling with >16,000 cores when processing graph and sparse linear algebra workloads. Over the prior work in PIM, both using 256 cores, Dalorex improves performance and energy consumption by two orders of magnitude through (1) a tile-based distributed-memory architecture where each processing tile holds an equal amount of data, and all memory operations are local; (2) a task-based parallel programming model where tasks are executed by the processing unit that is co-located with the target data; (3) a network design optimized for irregular traffic, where all communication is one-way, and messages do not contain routing metadata; (4) novel traffic-aware task scheduling hardware that maintains high core utilization; and (5) a data placement strategy that improves work balance. This work proposes architectural and software innovations to provide the greatest scalability to date for running graph algorithms while still being programmable for other domains.


翻译:低数据再利用和经常不定期的内存访问的应用,如图表或稀疏线性代数工作量,由于记忆瓶颈和核心利用率低,未能很好地缩小规模。虽然先前的预发、脱钩或管状设计工作可以减轻记忆延缓度,提高核心利用率,但记忆瓶颈仍然存在,原因是离芯带带带带宽有限。与混合内存立管(HMC)进行模拟(PIM)处理的方法克服了带宽限制,但由于任务时间安排和同步管理不当,未能实现高核心利用率。此外,由于HMC的记忆瓶颈和核心利用率低,现有高记忆-核心核心比核心比核心比高。我们引入Dalorolex,硬件-软件共同设计共同设计,实现高平行和能效,在处理图形和细微的平流中显示超过16,000个核心的缩略图和细微的平流动。在PIML工作之前,Dalorex改进了业绩和能源消耗,在以下两个级别上达到两个级别:(1)基于平台的分布式和缩式结构结构结构,每个处理数据时,每个处理数据数量相等的数据、运行数据、所有存储系统操作都是最接近的运行和最稳定的轨道;(2) 在设计中,在设计中,一个核心任务周期中,一个轨道上进行一个核心任务安排,而最平行的工作是同步的轨道,一个同步的计算。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年12月6日
Arxiv
0+阅读 · 2022年12月5日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员