Efficient computations of pairings with Miller Algorithm have recently received a great attention due to the many applications in cryptography. In this work, we give formulae for the optimal Ate pairing in terms of elliptic nets associated to twisted Barreto-Naehrig (BN) curve, Barreto-Lynn-Scott(BLS) curves and Kachisa-Schaefer-Scott(KSS) curves considered at the $128$, $192$ and $256$-bit security levels, and Scott-Guillevic curve with embedding degree $54$. We show how to parallelize the computation of these pairings when the elliptic net algorithm instead is used and we obtain except in the case of Kachisa-Schaefer-Scott(KSS) curves considered at the $256$-bit security level, more efficient theoretical results with $8$ processors compared to the case where the Miller algorithm is used. This work still confirms that $BLS48$ curves are the best for pairing-based cryptography at $256$-bit security level \cite{NARDIEFO19}.
翻译:与Miller Algorithm 的配对效率的计算最近由于密码学中的许多应用而引起极大关注。在这项工作中,我们给出了与扭曲的Barreto-Naehrig(BN)曲线、Barreto-Lynn-Scott(BLS)曲线和Kachisa-Schaefer-Scott(KSS)曲线相关的最佳对配网配对公式,这些曲线为128美元、192美元和256美元比特安全等级,Scott-Scott(KSS)曲线,Scott-Guillevic曲线的嵌入度为54美元。我们展示了如何在使用椭圆网算算法而不是Kachisa-Schaefer-Scott(KSS)曲线时将这些对配对齐的最佳计算公式。我们除了在256美元比特安全等级考虑的卡契萨-Schafer-Scott(KSS)曲线外,与使用米勒算法的案例相比,8美元处理器的理论结果更有效率。这项工作仍然证实,$BLS48$48值是配对制加密加密加密加密的最好的最佳方法,值为256-bet-bet-formaticromas%19s。