The sequence of moves in a dynamic team tournament may distort the ex-ante winning probabilities and harm efficiency. This paper compares eight different rules, suggested for soccer penalty shootouts, to determine the order of actions. Their fairness is analysed under three possible mathematical models of psychological pressure. We also discuss the probability of reaching the sudden death stage, as well as the complexity and strategy-proofness of the rules. In the case of stationary scoring probabilities, it remains sufficient to use static rules in order to improve fairness. However, it is worth compensating the second-mover by making it the first-mover in the sudden death stage. Our work has the potential to impact decision-makers who can achieve better outcomes in dynamic tournaments by a carefully chosen sequence of actions.


翻译:动态团队锦标赛的动作顺序可能会扭曲事前获胜概率和伤害效率。 本文比较了八条不同的规则, 建议用于足球决赛, 以决定行动顺序。 其公平性在三种可能的心理压力数学模型下分析。 我们还讨论了到达突然死亡阶段的概率, 以及规则的复杂性和战略的校正性。 在固定的评分概率的情况下, 使用静态规则来提高公平性就足够了。 但是, 值得通过在突然死亡阶段将其定为第一次来补偿第二局。 我们的工作有可能对决策者产生影响,他们可以通过精心选择的一系列行动在动态的锦标赛中取得更好的结果。

0
下载
关闭预览

相关内容

元强化学习综述及前沿进展
专知会员服务
62+阅读 · 2021年1月31日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
279+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Re-parameterizing VAEs for stability
Arxiv
0+阅读 · 2021年6月25日
Arxiv
0+阅读 · 2021年6月25日
Arxiv
6+阅读 · 2018年6月18日
VIP会员
相关VIP内容
元强化学习综述及前沿进展
专知会员服务
62+阅读 · 2021年1月31日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
279+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员