We present a novel internal calibration framework for Millimeter- Wave (mmWave) Frequency-Modulated Continuous-Wave (FMCW) radars to ensure robust performance under internal temperature variations, tailored for deployment in dense wireless networks. Our approach mitigates the impact of temperature-induced drifts in radar hardware, enhancing reliability. We propose a temperature compensation model that leverages internal sensor data and signal processing techniques to maintain measurement accuracy. Experimental results demonstrate improved robustness across a range of internal temperature conditions, with minimal computational overhead, ensuring scalability in dense network environments. The framework also incorporates ethical design principles, avoiding reliance on sensitive external data. The proposed scheme reduces the Pearson correlation between the amplitude of the Intermediate Frequency (IF) signal and internal temperature drift up to 84%, significantly mitigating the temperature drift.
翻译:暂无翻译