Quantum private information retrieval (QPIR) is a protocol in which a user retrieves one of multiple classical files by downloading quantum systems from non-communicating $\mathsf{n}$ servers each of which contains a copy of all files, while the identity of the retrieved file is unknown to each server. Symmetric QPIR (QSPIR) is QPIR in which the user only obtains the queried file but no other information of the other files. In this paper, we consider the $(\mathsf{n} - 1)$-private QSPIR in which the identity of the retrieved file is secret even if any $\mathsf{n} - 1$ servers collude, and derive the QSPIR capacity for this problem which is defined as the maximum ratio of the retrieved file size to the total size of the downloaded quantum systems. For an even number n of servers, we show that the capacity of the $(\mathsf{n}-1)$-private QSPIR is $2/\mathsf{n}$, when we assume that there are prior entanglements among the servers. We construct an $(\mathsf{n} - 1)$-private QSPIR protocol of rate $\lceil\mathsf{n}/2\rceil^{-1}$ and prove that the capacity is upper bounded by $2/\mathsf{n}$ even if any error probability is allowed. The $(\mathsf{n} - 1)$-private QSPIR capacity is strictly greater than the classical counterpart.
翻译:量子私有信息检索( QPIR) 是一个协议, 用户从非commission $\ mathsfsf{ n} 服务器上下载量子系统, 获取多个古典文件之一, 其中每个服务器都包含一份所有文件的副本, 而每个服务器还不知道所检索文件的身份 。 对称 QPIR (QSPIR) 是 QPIR, 其中用户只能获取查询文件, 但其它文件没有其它信息 。 在本文中, 我们考虑 $( mathsfsf{ n} - 1) 私人 QSPIR, 其中所检索的文件的身份是保密的, 即使其中任何 $\ maths{n} - 1$ 服务器都包含一份副本副本副本, 而为此问题输入QSPIR 能力, 它的定义是已检索的文件大小相对于下载量子系统总规模的最大比率。 对于一个偶数的服务器, 我们显示, $( mathfs{n} $- 私人 QSPIR 的容量是 2/ math} ralf} ral_ 美元。 当我们假设在前的服务器中, Qrus_ ralf\ ral_ ral_ ral_ ral_ ral_ rals rals a 比例 ex rals ralx ralx =$。