User privacy protection is considered a critical issue in wireless networks, which drives the demand for various secure information interaction techniques. In this paper, we introduce an intelligent reflecting surface (IRS)-aided security classification wireless communication system, which reduces the transmit power of the base station (BS) by classifying users with different security requirements. Specifically, we divide the users into confidential subscribers with secure communication requirements and general communication users with simple communication requirements. During the communication period, we guarantee the secure rate of the confidential subscribers while ensuring the service quality of the general communication users, thereby reducing the transmit power of the BS. To realize such a secure and green information transmission, the BS implements a beamforming design on the transmitted signal superimposed with artificial noise (AN) and then broadcasts it to users with the assistance of the IRS's reflection. We develop an alternating optimization framework to minimize the BS downlink power with respect to the active beamformers of the BS, the AN vector at the BS, and the reflection phase shifts of the IRS. A successive convex approximation (SCA) method is proposed so that the nonconvex beamforming problems can be converted to tractable convex forms. The simulation results demonstrate that the proposed algorithm is convergent and can reduce the transmit power by 20\% compared to the best benchmark scheme.
翻译:在无线网络中,用户隐私保护被认为是一个关键问题,它驱动着对各种安全信息互动技术的需求。在本文中,我们引入了智能反射表面(IRS)辅助安全分类无线通信系统,通过对不同安全要求的用户进行分类,降低了基地站的传输能力。具体地说,我们将用户分为具有安全通信要求的保密用户和具有简单通信要求的一般通信用户。在通信期间,我们保证保密用户的安全率,同时确保一般通信用户的服务质量,从而降低BS的传输能力。为了实现这种安全和绿色信息传输,BS对以人工噪音(AN)超载的传输信号进行波形设计,然后在IRS的反射协助下向用户广播。我们开发了一个交替优化框架,以尽量减少BS的下行能力与BS、BS的AN矢量以及IRS的反射阶段变化。为了实现这种安全和绿色信息传输,BS采用了一种连续的配置方法,BSA对传送信号进行波形设计设计,用人工噪音(AN)超载信号,然后在IRS的反射镜上向用户播放中播放。我们提出的20级模型将模拟模型转换成模型,以显示最佳的动力转换为同步模型,从而能够转换为同步变换成20号。