For the gang territoriality model \begin{align*} \begin{cases} u_t = D_u \Delta u + \chi_u \nabla \cdot (u \nabla w), \\ v_t = D_v \Delta v + \chi_v \nabla \cdot (v \nabla z), \\ w_t = -w + \frac{v}{1+v}, \\ z_t = -z + \frac{u}{1+u}, \end{cases} \end{align*} where $u$ and $v$ denote the densities of two rivaling gangs which spray graffiti (with densities $z$ and $w$, respectively) and partially move away from the other gang's graffiti, we construct global, bounded classical solutions. By making use of quantitative global estimates, we prove that these solutions converge to homogeneous steady states if $\|u_0\|_{L^\infty(\Omega)}$ and $\|v_0\|_{L^\infty(\Omega)}$ are sufficiently small. Moreover, we perform numerical experiments which show that for different choices of parameters, the system may become diffusion- or convection-dominated, where in the former case the solutions converge toward constant steady states while in the later case nontrivial asymptotic behavior such as segregation is observed. In order to perform these experiments, we apply a nonlinear finite element flux-corrected transport method (FEM-FCT) which is positivity-preserving. Then, we treat the nonlinearities in both the system and the proposed nonlinear scheme simultaneously using fixed-point iteration.


翻译:暂无翻译

0
下载
关闭预览

相关内容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系统编译器、体系结构和综合国际会议。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/cases/index.html
【2022新书】数据科学的实用线性代数,328页pdf
专知会员服务
136+阅读 · 2022年9月17日
专知会员服务
16+阅读 · 2021年10月4日
专知会员服务
50+阅读 · 2021年6月2日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
147+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
概率图模型体系:HMM、MEMM、CRF
机器学习研究会
30+阅读 · 2018年2月10日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
基于LDA的主题模型实践(三)
机器学习深度学习实战原创交流
23+阅读 · 2015年10月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
概率图模型体系:HMM、MEMM、CRF
机器学习研究会
30+阅读 · 2018年2月10日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
基于LDA的主题模型实践(三)
机器学习深度学习实战原创交流
23+阅读 · 2015年10月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员