Frame Semantic Role Labeling (FSRL) identifies arguments and labels them with frame semantic roles defined in FrameNet. Previous researches tend to divide FSRL into argument identification and role classification. Such methods usually model role classification as naive multi-class classification and treat arguments individually, which neglects label semantics and interactions between arguments and thus hindering performance and generalization of models. In this paper, we propose a query-based framework named ArGument Extractor with Definitions in FrameNet (AGED) to mitigate these problems. Definitions of frames and frame elements (FEs) in FrameNet can be used to query arguments in text. Encoding text-definition pairs can guide models in learning label semantics and strengthening argument interactions. Experiments show that AGED outperforms previous state-of-the-art by up to 1.3 F1-score in two FrameNet datasets and the generalization power of AGED in zero-shot and fewshot scenarios. Our code and technical appendix is available at https://github.com/PKUnlp-icler/AGED.


翻译:框架语义作用标签( FSRL ), 以框架 Net 定义的语义作用来辨别参数和标签。 以前的研究往往将 FSRL 划分为参数识别和角色分类。 这种方法通常以天真的多级分类和单独处理参数为示范角色分类, 忽视了语义和参数之间的相互作用, 从而阻碍了模型的性能和概括化。 在本文中, 我们提议了一个名为ArGument Exportor 的查询框架网络定义( AGED ) 的框架框架网络中的参数和框架元素( FES ) 来缓解这些问题。 FramNet 中的框架和框架元素( FES) 定义可以用于在文本中查询参数。 编码文本定义的文本定义配对可以指导在学习标签语义和强化参数互动方面的模型。 实验显示, AGEGED 在两个框架网数据集中, 超越了先前的状态, 最高为1.3 F1- 核心, 在零点和小片段情景中, AGED 。 我们的代码和技术附录可在 https://github.com/ PKUnlp- icler/ AGEGedD 。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
40+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月5日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
13+阅读 · 2017年12月5日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员