In this work, we introduce CPLASS (Continuous Piecewise-Linear Approximation via Stochastic Search), an algorithm for detecting changes in velocity within multidimensional data. The one-dimensional version of this problem is known as the change-in-slope problem (see Fearnhead & Grose (2022), Baranowski et al. (2019)). Unlike traditional changepoint detection methods that focus on changes in mean, detecting changes in velocity requires a specialized approach due to continuity constraints and parameter dependencies, which frustrate popular algorithms like binary segmentation and dynamic programming. To overcome these difficulties, we introduce a specialized penalty function to balance improvements in likelihood due to model complexity, and a Markov Chain Monte Carlo (MCMC)-based approach with tailored proposal mechanisms for efficient parameter exploration. Our method is particularly suited for analyzing intracellular transport data, where the multidimensional trajectories of microscale cargo are driven by teams of molecular motors that undergo complex biophysical transitions. To ensure biophysical realism in the results, we introduce a speed penalty that discourages overfitted of short noisy segments while maintaining consistency in the large-sample limit. Additionally, we introduce a summary statistic called the Cumulative Speed Allocation, which is robust with respect to idiosyncracies of changepoint detection while maintaining the ability to discriminate between biophysically distinct populations.


翻译:本文提出CPLASS(基于随机搜索的连续分段线性逼近)算法,用于检测多维数据中的速度变化。该问题的一维形式被称为斜率变化问题(参见Fearnhead & Grose (2022)、Baranowski et al. (2019))。与专注于均值变化的传统变点检测方法不同,由于连续性约束和参数依赖性的存在,速度变化检测需要专门的方法,这使得二分分割和动态规划等常用算法难以适用。为克服这些困难,我们引入了一种专门设计的惩罚函数来平衡模型复杂度带来的似然改进,并采用基于马尔可夫链蒙特卡洛(MCMC)的方法,配合定制化的提议机制以实现高效的参数探索。本方法特别适用于分析细胞内运输数据,其中微尺度货物的多维轨迹由经历复杂生物物理转变的分子马达团队驱动。为确保结果的生物物理真实性,我们引入了速度惩罚项,以抑制对短噪声段的过拟合,同时保持大样本极限下的一致性。此外,我们提出了一种称为累积速度分配的汇总统计量,该统计量对变点检测的特异性具有鲁棒性,同时保持区分生物物理特性不同群体的能力。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | 利用 RNN 和 CNN 构建基于 FreeBase 的问答系统
开放知识图谱
11+阅读 · 2018年4月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | 利用 RNN 和 CNN 构建基于 FreeBase 的问答系统
开放知识图谱
11+阅读 · 2018年4月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员