DoubleML is an open-source Python library implementing the double machine learning framework of Chernozhukov et al. (2018) for a variety of causal models. It contains functionalities for valid statistical inference on causal parameters when the estimation of nuisance parameters is based on machine learning methods. The object-oriented implementation of DoubleML provides a high flexibility in terms of model specifications and makes it easily extendable. The package is distributed under the MIT license and relies on core libraries from the scientific Python ecosystem: scikit-learn, numpy, pandas, scipy, statsmodels and joblib. Source code, documentation and an extensive user guide can be found at https://github.com/DoubleML/doubleml-for-py and https://docs.doubleml.org.
翻译:双ML是一个开放源码的Python图书馆,对各种因果模型实施Chernozhukov等人(2018年)的双机学习框架(2018年),其中包含在根据机器学习方法估计骚扰参数时对因果参数进行有效统计推断的功能。双ML的以目标为导向的实施在示范规格方面提供了很大的灵活性,便于扩展。这套软件根据麻省理工学院的许可证分发,并依赖科学Python生态系统的核心图书馆:cikit-learn、numpy、pandas、scipy、stats模型和joblib。源代码、文件和广泛的用户指南见https://github.com/DoubleML/bonniml-for-py和https://docs.wlemml.org。