We investigate the security of Split Learning -- a novel collaborative machine learning framework that enables peak performance by requiring minimal resources consumption. In the present paper, we expose vulnerabilities of the protocol and demonstrate its inherent insecurity by introducing general attack strategies targeting the reconstruction of clients' private training sets. More prominently, we show that a malicious server can actively hijack the learning process of the distributed model and bring it into an insecure state that enables inference attacks on clients' data. We implement different adaptations of the attack and test them on various datasets as well as within realistic threat scenarios. We demonstrate that our attack is able to overcome recently proposed defensive techniques aimed at enhancing the security of the split learning protocol. Finally, we also illustrate the protocol's insecurity against malicious clients by extending previously devised attacks for Federated Learning. To make our results reproducible, we made our code available at https://github.com/pasquini-dario/SplitNN_FSHA.


翻译:我们调查了 " 分化学习 " 的安全性,这是一个创新的协作机器学习框架,它通过要求最低的资源消耗来达到顶点。在本文件中,我们暴露了协议的脆弱性,并通过采用针对客户私人培训组重建的一般性攻击战略来表明其固有的不安全性。更突出的是,我们显示恶意服务器可以积极劫持分布式模式的学习过程,并将它带入一个可以推断客户数据攻击的不安全状态。我们实施了对袭击的不同调整,并在各种数据集和现实的威胁情景中测试了这些数据。我们证明,我们的攻击能够克服最近提出的旨在加强分解学习协议安全的防御技术。最后,我们还通过扩大以前设计的对联邦学习组织的攻击来说明协议对恶意客户的不安全性。为了使我们的结果能够重新得到体现,我们在https://github.com/pasquini-dario/Splitann_FSHA中公布了我们的代码。

1
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
已删除
将门创投
14+阅读 · 2019年5月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月4日
Arxiv
14+阅读 · 2020年10月26日
Arxiv
38+阅读 · 2020年3月10日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
已删除
将门创投
14+阅读 · 2019年5月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员