There have been several successful implementations of bio-inspired legged robots that can trot, walk, and hop robustly even in the presence of significant unplanned disturbances. Despite all of these accomplishments, practical control and high-level decision-making algorithms in multi-modal legged systems are overlooked. In nature, animals such as birds impressively showcase multiple modes of mobility including legged and aerial locomotion. They are capable of performing robust locomotion over large walls, tight spaces, and can recover from unpredictable situations such as sudden gusts or slippery surfaces. Inspired by these animals' versatility and ability to combine legged and aerial mobility to negotiate their environment, our main goal is to design and control legged robots that integrate two completely different forms of locomotion, ground and aerial mobility, in a single platform. Our robot, the Husky Carbon, is being developed to integrate aerial and legged locomotion and to transform between legged and aerial mobility. This work utilizes a Reference Governor (RG) based on low-level control of Husky's dynamical model to maintain the efficiency of legged locomotion, uses Probabilistic Road Maps (PRM) and 3D A* algorithms to generate an optimal path based on the energetic cost of transport for legged and aerial mobility


翻译:尽管取得了所有这些成就,但实际控制和多式腿系系统中的高层次决策算法却被忽视。在大自然中,鸟类等动物以惊人的方式展示了多种行动模式,包括脚动和空中移动。它们能够在大墙上、紧密空间上进行强力的移动,并能够从突如其来的螺旋或滑滑地表面等不可预测的情况中恢复过来。由于这些动物的多功能性以及结合脚动和空中行动以谈判环境的能力,我们的主要目标是设计和控制把两种完全不同的移动、地面和空中行动方式整合在一起的脚动机器人。我们的机器人Husky碳正在开发中,以整合空中和脚动的移动方式,并改造脚动和空中行动。这项工作利用了依据Husky动态模型低级别控制的参考州长,以保持脚动和空中行动模式的效率,利用了最佳移动A-M-M-M-M-M-M-M-M-M-A-A-A-A-A-A-A-A-A-A-A-A-A-MA-A-A-MA-A-MA-A-A-A-A-MA-A-MA-A-A-A-A-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-A-A-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-MA-A)最佳最佳移动)最佳机动算)最佳移动算法算法算)的升级的移动效率等最佳移动算法。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员