Hyperspectral images (HSI) classification is a high technical remote sensing software. The purpose is to reproduce a thematic map . The HSI contains more than a hundred hyperspectral measures, as bands (or simply images), of the concerned region. They are taken at neighbors frequencies. Unfortunately, some bands are redundant features, others are noisily measured, and the high dimensionality of features made classification accuracy poor. The problematic is how to find the good bands to classify the regions items. Some methods use Mutual Information (MI) and thresholding, to select relevant images, without processing redundancy. Others control and avoid redundancy. But they process the dimensionality reduction, some times as selection, other times as wrapper methods without any relationship . Here , we introduce a survey on all scheme used, and after critics and improvement, we synthesize a dashboard, that helps user to analyze an hypothesize features selection and extraction softwares.
翻译:超光谱图像(HSI)分类是一种高技术遥感软件。目的是复制一份专题地图。HSI包含100多个超光谱测量,作为相关区域的波段(或简单的图像),它们是在相邻频率上拍摄的。不幸的是,有些波段是冗余的特征,另一些是静音测量,特征的高度维度使得分类准确性差。问题在于如何找到对区域项目进行分类的好波段。有些方法使用相互信息(MI)和阈值,选择相关图像,而不处理冗余。另一些方法则控制并避免冗余。但它们处理维度减少,有时作为选择,有时作为包装方法处理,没有任何关系。在这里,我们对所有使用的计划进行一次调查,在批评者和改进之后,我们合成一个仪表,帮助用户分析虚构特征选择和提取软件。