An important aspect of AI design and ethics is to create systems that reflect aggregate preferences of the society. To this end, the techniques of social choice theory are often utilized. We propose a new social choice function motivated by the PageRank algorithm. The function ranks voting options based on the Condorcet graph of pairwise comparisons. To this end, we transform the Condorcet graph into a Markov chain whose stationary distribution provides the scores of the options. We show how the values in the stationary distribution can be interpreted as quantified aggregate support for the voting options, to which the community of voters converges through an imaginary sequence of negotiating steps. Because of that, we suggest the name "convergence voting" for the new voting scheme, and "negotiated community support" for the resulting stationary allocation of scores. Our social choice function can be viewed as a consensus voting method, sitting somewhere between Copeland and Borda. On the one hand, it does not necessarily choose the Condorcet winner, as strong support from a part of the society can outweigh mediocre uniform support. On the other hand, the influence of unpopular candidates on the outcome is smaller than in the primary technique of consensus voting, i.e., the Borda count. We achieve that without having to introduce an ad hoc weighting that some other methods do.
翻译:AI 设计和伦理的一个重要方面是创建反映社会总体偏好的制度。 为此,经常使用社会选择理论的技术。 我们提出由PageRank算法驱动的新的社会选择功能。 功能将基于Condorcet图的双向比较的投票选项排序。 为此, 我们将 Condorcet 图形转换成一个Markov 链, 固定分布提供了选项的分数。 我们显示, 固定分布中的数值如何可以被解释为对投票选项的量化总体支持, 选民群体通过一系列想象的谈判步骤聚集到这些选项中。 由于这个原因, 我们为新的投票计划推荐了“ convergle 投票” 的名称, 并为由此产生的得分固定分配提出了“ 谈判社区支持 ” 。 为此, 我们的社会选择功能可以被视为一种协商一致的投票方法, 位于科佩兰和博尔达之间。 一方面, 我们不一定选择Condorcet 获胜者, 作为社会一部分的有力支持, 而不是中等的一致支持。 另一方面, 不受波普尔卡候选人对结果的影响, 在不采用某种特定的方法上, 。