In the process of developing an infrastructure for providing visualization and visual analytics (VIS) tools to epidemiologists and modeling scientists, we encountered a technical challenge for applying a number of visual designs to numerous datasets rapidly and reliably with limited development resources. In this paper, we present a technical solution to address this challenge. Operationally, we separate the tasks of data management, visual designs, and plots and dashboard deployment in order to streamline the development workflow. Technically, we utilize: an ontology to bring datasets, visual designs, and deployable plots and dashboards under the same management framework; multi-criteria search and ranking algorithms for discovering potential datasets that match a visual design; and a purposely-design user interface for propagating each visual design to appropriate datasets (often in tens and hundreds) and quality-assuring the propagation before the deployment. This technical solution has been used in the development of the RAMPVIS infrastructure for supporting a consortium of epidemiologists and modeling scientists through visualization.
翻译:在开发向流行病学家和模型科学家提供可视化和视觉分析工具的基础设施的过程中,我们遇到技术挑战,难以以有限的发展资源迅速和可靠地对众多数据集应用一些视觉设计;在本文中,我们提出了一个应对这一挑战的技术解决办法;在实际操作上,我们将数据管理、视觉设计、地块和仪表板部署的任务分开,以简化发展工作流程;在技术上,我们利用:将数据集、可视设计、可部署的地块和仪表板纳入同一管理框架的本体学;为发现与视觉设计匹配的潜在数据集进行多标准搜索和排序;为将每个视觉设计推广到适当的数据集(通常为数百个)和在部署之前对传播进行质量保证而设计一个目的设计用户界面;这一技术解决办法用于发展RAMPVIS基础设施,以支持流行病学家和模拟科学家通过可视化形成联合体。