This paper investigates the pursuit-evasion problem of a defensive gun turret and one or more attacking drones. The turret must ``visit" each attacking drone once, as quickly as possible, to defeat the threat. This constitutes a Shortest Hamiltonian Path (SHP) through the drones. The investigation considers situations with increasing fidelity, starting with a 2D kinematic model and progressing to a 3D dynamic model. In 2D we determine the region from which one or more drones can always reach a turret, or the region close enough to it where they can evade the turret. This provides optimal starting angles for $n$ drones around a turret and the maximum starting radius for one and two drones. We show that safety regions also exist in 3D and provide a controller so that a drone in this region can evade the pan-tilt turret. Through simulations we explore the maximum range $n$ drones can start and still have at least one reach the turret, and analyze the effect of turret behavior and the drones' number, starting configuration, and behaviors.
翻译:本文调查了防御性枪炮炮炮塔和一个或多个攻击无人机的追击避险问题。 炮塔必须尽快“ 访问” 攻击无人机一次, 以击败威胁。 这是最短的汉密尔顿路径( SHP ), 由无人机组成 。 调查考虑越来越忠诚的情况, 从 2D 运动模型开始, 并发展到 3D 动态模型 。 在 2D 中, 我们确定一个或多个无人机总能到达一个炮塔的区域, 或离它足够近的区域, 或它们能够躲避炮塔的区域。 这为一架炮塔楼周围的无人机提供了最佳的起始角度 。 这为一两架无人机提供了最优的起始点 。 我们显示, 安全区域也位于 3D, 并提供一个控制器, 以便该地区的无人机可以避开 Pan- plitt turret 。 我们通过模拟, 探索最高射程的无人机可以开始, 并且至少到达一个炮塔塔。 我们分析了 和无人机的动作、 开始的动作和动作、 动作、 开始的形状和动作和动作。