Finding large cliques or cliques missing a few edges is a fundamental algorithmic task in the study of real-world graphs, with applications in community detection, pattern recognition, and clustering. A number of effective backtracking-based heuristics for these problems have emerged from recent empirical work in social network analysis. Given the NP-hardness of variants of clique counting, these results raise a challenge for beyond worst-case analysis of these problems. Inspired by the triadic closure of real-world graphs, Fox et al. (SICOMP 2020) introduced the notion of $c$-closed graphs and proved that maximal clique enumeration is fixed-parameter tractable with respect to $c$. In practice, due to noise in data, one wishes to actually discover "near-cliques", which can be characterized as cliques with a sparse subgraph removed. In this work, we prove that many different kinds of maximal near-cliques can be enumerated in polynomial time (and FPT in $c$) for $c$-closed graphs. We study various established notions of such substructures, including $k$-plexes, complements of bounded-degeneracy and bounded-treewidth graphs. Interestingly, our algorithms follow relatively simple backtracking procedures, analogous to what is done in practice. Our results underscore the significance of the $c$-closed graph class for theoretical understanding of social network analysis.
翻译:在研究真实世界图时,在社区检测、模式识别和集群应用中,找到缺少一些边际的大型晶石或晶石是一项基本的算法任务。最近社会网络分析的经验性工作已经为这些问题产生了一些有效的反向偏差。最近社会网络分析中的经验性工作产生了一些基于这些问题的有效反向偏差。鉴于分类计算变异的NP-硬性,这些结果提出了超越这些问题最坏情况分析的挑战。在实际世界图“Fox et al.”(SICOMP 2020)的三轨结束的启发下,引入了美元关闭的图表的概念,并证明最大细微细图是固定的参数,对美元进行固定的参数。在实践上,由于数据中的噪音,人们希望实际发现“早期奇差”,这可以被描述为“细微小的细小的细小的细微” 。在这项工作中,我们证明许多不同种类的最接近奇特的近端图可以在多端时间(和FPT,以美元)中列出,对于美元关闭的图表,并且证明,最高微微的细微的分数分数分数计算,我们固定的平级的平级的平面的平面图,我们研究的平面的平面的平面的平比的平比的平比。我们研究了。我们研究各种固定的平的平的平的平的平比的平的平的平的平的平的平的平的平的平的平的平的平的平的平面的平面的平比,我们研究。