Despite extensive research on parsing of English sentences into Abstraction Meaning Representation (AMR) graphs, which are compared to gold graphs via the Smatch metric, full-document parsing into a unified graph representation lacks well-defined representation and evaluation. Taking advantage of a super-sentential level of coreference annotation from previous work, we introduce a simple algorithm for deriving a unified graph representation, avoiding the pitfalls of information loss from over-merging and lack of coherence from under-merging. Next, we describe improvements to the Smatch metric to make it tractable for comparing document-level graphs, and use it to re-evaluate the best published document-level AMR parser. We also present a pipeline approach combining the top performing AMR parser and coreference resolution systems, providing a strong baseline for future research.
翻译:尽管对将英文句子划入《抽象表示》图表进行了广泛的研究,这些图表通过Smatch 度量标准与金图表进行比较,但将整份文件划入统一的图形表示法缺乏明确界定的表述和评价。 我们利用以往工作中超自然水平的共同参考注释,采用了一种简单的算法来得出一个统一的图形表示法,避免信息因过度合并和合并不足而损失的陷阱。 其次,我们描述了对Smatch 度量标准所作的改进,以使它能够用于比较文件级别图表,并利用它重新评价最佳的已出版文件AMR级表示法。 我们还介绍了一种将最高业绩的AMR分析器和共同参考解析法系统结合起来的管道法,为今后的研究提供了坚实的基线。