Model predictive control (MPC) achieves stability and constraint satisfaction for general nonlinear systems, but requires computationally expensive online optimization. This paper studies approximations of such MPC controllers via neural networks (NNs) to achieve fast online evaluation. We propose safety augmentation that yields deterministic guarantees for convergence and constraint satisfaction despite approximation inaccuracies. We approximate the entire input sequence of the MPC with NNs, which allows us to verify online if it is a feasible solution to the MPC problem. We replace the NN solution by a safe candidate based on standard MPC techniques whenever it is infeasible or has worse cost. Our method requires a single evaluation of the NN and forward integration of the input sequence online, which is fast to compute on resource-constrained systems. The proposed control framework is illustrated on three non-linear MPC benchmarks of different complexity, demonstrating computational speedups orders of magnitudes higher than online optimization. In the examples, we achieve deterministic safety through the safety-augmented NNs, where naive NN implementation fails.
翻译:模型预测控制 (MPC) 能够实现一般非线性系统的稳定性和约束条件满足,但需要在线优化,计算代价高昂。本文研究了通过神经网络 (NN) 进行 MPC 控制器的近似以实现快速在线评估的方法。我们提出了安全增强技术,通过这种方法,即使近似不准确,也能确定收敛和约束条件满足的概率。我们使用 NN 近似 MPC 的整个输入序列,因此能够在线验证它是否是 MPC 问题的可行解。每当 NN 的解不可行或代价较高时,我们都会用基于标准 MPC 技术的安全候选替换 NN 解决方案。我们的方法需要 NN 单次评估和在线输入序列的正向积分计算,可轻松在资源受限的系统上进行计算。我们在三个不同复杂度的非线性 MPC 基准测试中演示了所提出的控制框架,展示了比在线优化高几个数量级的计算速度优势。在这些例子中,通过安全增强型 NN 实现了确定性的安全性,而简单的 NN 实现则失败了。