This paper proposes a novel control approach composed of sinusoidal reference trajectories and trajectory tracking controller for the second-order chained form system. The system is well-known as a canonical form for a class of second-order nonholonomic systems obtained by appropriate transformation of the generalized coordinates and control inputs. The system is decomposed into three subsystems, two of them are the so-called double integrators and the other subsystem is a nonlinear system depending on one of the double integrators. The double integrators are linearly controllable, which enables to transit the value of the position state in order to modify the nature of the nonlinear system that depends on them. Transiting the value to "one" corresponds to modifying the nonlinear subsystem into the double integrator; transiting the value to "zero" corresponds to modifying the nonlinear subsystem into an uncontrollable linear autonomous system. Focusing on this nature, this paper proposes a feedforward control strategy. Furthermore, from the perspective of practical usefulness, the control strategy is extended into trajectory tracking control by using proportional-derivative feedback. The effectiveness of the proposed method is demonstrated through several numerical experiments including an application to an underactuated manipulator.
翻译:本文提出一种新的控制方法,由二阶链形式系统的正弦参考参考轨迹和轨迹跟踪控制器组成。 该系统作为通过对通用坐标和控制输入进行适当转换而获得的二阶非光谱化系统类别的一种卡通形式而广为人知。 该系统被分解成三个子系统, 其中两个是所谓的双集成器, 而另一个子子系统则是一个非线性系统, 取决于一个双集成器。 双集成器可以线性控制, 从而能够传输位置状态值, 从而改变依赖这些系统的非线性系统的性质。 将值转换为“ 1”, 相当于将非线性子子系统修改为双集成系统; 将值转换为“ 零”, 相当于将非线性子系统修改为一个不可控制的线性线性自主系统。 以这种性质为焦点, 本文提出一个进向式控制战略。 此外, 从实际用途的角度看, 控制战略将扩展为轨迹跟踪控制状态, 以改变依赖它们的非线性系统的性质。 将扩展为“ 1 ”,, 以 以 以 以 以 以 以 比例 格式实验性 显示 的 实验性 的 的 向 的 向 向 的, 以 以 显示 的 的 的 以 的 以 表示 向 的 以 向 向 表示 表示 表示 表示 。