State-of-the-art object detectors are vulnerable to localized patch hiding attacks where an adversary introduces a small adversarial patch to make detectors miss the detection of salient objects. The patch attacker can carry out a physical-world attack by printing and attaching an adversarial patch to the victim object. In this paper, we propose DetectorGuard, the first general framework for building provably robust detectors against localized patch hiding attacks. To start with, we aim to take advantage of recent advancements of robust image classification research by asking: can we adapt robust image classifiers for robust object detection? Unfortunately, due to their task difference, an object detector naively adapted from a robust image classifier 1) may not necessarily be robust in the adversarial setting or 2) even maintain decent performance in the clean setting. To build a high-performance robust object detector, we propose an objectness explaining strategy: we adapt a robust image classifier to predict objectness for every image location and then explain each objectness using the bounding boxes predicted by a conventional object detector. If all objectness is well explained, we output the predictions made by the conventional object detector; otherwise, we issue an attack alert. Notably, 1) in the adversarial setting, we formally prove the end-to-end robustness of DetectorGuard on certified objects, i.e., it either detects the object or triggers an alert, against any patch hiding attacker within our threat model; 2) in the clean setting, we have almost the same performance as state-of-the-art object detectors. Our evaluation on the PASCAL VOC, MS COCO, and KITTI datasets further demonstrates that DetectorGuard achieves the first provable robustness against localized patch hiding attacks at a negligible cost (<1%) of clean performance.


翻译:最先进的天体探测器很容易被本地化的隐蔽攻击, 因为对手会引入一个小型对抗性图像分类器, 让探测器无法探测突出物体。 补丁攻击器可以通过打印和给受害者物体附加一个对抗性补丁来进行物理世界攻击。 在本文中, 我们提议了SetorGuard, 这是针对本地化隐蔽攻击建立可观强力探测器的第一个通用框架。 首先, 我们的目标是利用最近出现的稳健图像分类研究的进展, 询问: 我们能否调整强健的图像分类器, 以进行强健的天体探测? 不幸的是, 由于其任务差异, 目标探测器可以天真地从坚固的图像分类器上调出一个天体攻击性攻击。 否则, 我们提出高性能的坚固的天体探测器, 我们提出一个高性能图像分类, 用来预测每个图像位置的精确性能, 然后用常规天体探测器预测的封装箱解释每个目标的特性。 如果所有目标都得到了很好的解释, 我们用常规的物体探测器对目标探测器所作的预测; 否则, 几乎可以将物体探测器的天体化的天体变的天体变的天体探测器 ; 向内部的轨道警报显示一个稳定的轨道, 我们的精确的精确状态, 。 。 我们的轨道的精确性警报显示, 。

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2020年12月28日
专知会员服务
37+阅读 · 2020年11月24日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
13+阅读 · 2021年3月3日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Polarity Loss for Zero-shot Object Detection
Arxiv
3+阅读 · 2018年11月22日
Arxiv
19+阅读 · 2018年5月17日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关论文
Arxiv
13+阅读 · 2021年3月3日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Polarity Loss for Zero-shot Object Detection
Arxiv
3+阅读 · 2018年11月22日
Arxiv
19+阅读 · 2018年5月17日
Arxiv
7+阅读 · 2018年3月19日
Top
微信扫码咨询专知VIP会员