Many of the recent triumphs in machine learning are dependent on well-tuned hyperparameters. This is particularly prominent in reinforcement learning (RL) where a small change in the configuration can lead to failure. Despite the importance of tuning hyperparameters, it remains expensive and is often done in a naive and laborious way. A recent solution to this problem is Population Based Training (PBT) which updates both weights and hyperparameters in a single training run of a population of agents. PBT has been shown to be particularly effective in RL, leading to widespread use in the field. However, PBT lacks theoretical guarantees since it relies on random heuristics to explore the hyperparameter space. This inefficiency means it typically requires vast computational resources, which is prohibitive for many small and medium sized labs. In this work, we introduce the first provably efficient PBT-style algorithm, Population-Based Bandits (PB2). PB2 uses a probabilistic model to guide the search in an efficient way, making it possible to discover high performing hyperparameter configurations with far fewer agents than typically required by PBT. We show in a series of RL experiments that PB2 is able to achieve high performance with a modest computational budget.


翻译:近来在机器学习方面的许多成功都依赖于经过良好调整的超参数。 这在强化学习(RL)中特别突出,因为对配置进行小的改变可能导致失败。尽管调整超参数很重要,但费用仍然昂贵,而且往往以幼稚和艰苦的方式完成。这个问题的最近解决办法是人口培训(PBT),它更新了一个代理人员单一培训的重量和超参数。PBT已证明在RL中特别有效,导致外地的广泛使用。然而,PBT缺乏理论保障,因为它依靠随机的超参数空间探索。这种效率低通常意味着它需要大量的计算资源,而许多中小型实验室则无法使用这种资源。在这项工作中,我们采用了第一个效率很高的PBT型算法(PPB2)。 PB2使用一种概率模型来有效指导搜索,从而能够发现高性超参数配置,而比通常高的PB2级测试要低得多。我们用一个普通的PB2级测试来显示一个普通的PLT。

0
下载
关闭预览

相关内容

【NeurIPS2020】图网的主邻域聚合
专知会员服务
33+阅读 · 2020年9月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
223+阅读 · 2020年6月5日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2020年12月1日
Arxiv
0+阅读 · 2020年12月1日
Arxiv
5+阅读 · 2018年6月12日
VIP会员
相关VIP内容
【NeurIPS2020】图网的主邻域聚合
专知会员服务
33+阅读 · 2020年9月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
223+阅读 · 2020年6月5日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
Top
微信扫码咨询专知VIP会员