Graph Collaborative Filtering (GCF), one of the most widely adopted recommendation system methods, effectively captures intricate relationships between user and item interactions. Graph Contrastive Learning (GCL) based GCF has gained significant attention as it leverages self-supervised techniques to extract valuable signals from real-world scenarios. However, many methods usually learn the instances of discrimination tasks that involve the construction of contrastive pairs through random sampling. GCL approaches suffer from sampling bias issues, where the negatives might have a semantic structure similar to that of the positives, thus leading to a loss of effective feature representation. To address these problems, we present the \underline{Proto}typical contrastive learning through \underline{A}lignment and \underline{U}niformity for recommendation, which is called \textbf{ProtoAU}. Specifically, we first propose prototypes (cluster centroids) as a latent space to ensure consistency across different augmentations from the origin graph, aiming to eliminate the need for random sampling of contrastive pairs. Furthermore, the absence of explicit negatives means that directly optimizing the consistency loss between instance and prototype could easily result in dimensional collapse issues. Therefore, we propose aligning and maintaining uniformity in the prototypes of users and items as optimization objectives to prevent falling into trivial solutions. Finally, we conduct extensive experiments on four datasets and evaluate their performance on the task of link prediction. Experimental results demonstrate that the proposed ProtoAU outperforms other representative methods. The source codes of our proposed ProtoAU are available at \url{https://github.com/oceanlvr/ProtoAU}.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员