Unmanned surface vehicles (USVs) have great value with their ability to execute hazardous and time-consuming missions over water surfaces. Recently, USVs for inland waterways have attracted increasing attention for their potential application in autonomous monitoring, transportation, and cleaning. However, unlike sailing in open water, the challenges posed by scenes of inland waterways, such as the complex distribution of obstacles, the global positioning system (GPS) signal denial environment, the reflection of bank-side structures, and the fog over the water surface, all impede USV application in inland waterways. To address these problems and stimulate relevant research, we introduce USVInland, a multisensor dataset for USVs in inland waterways. The collection of USVInland spans a trajectory of more than 26 km in diverse real-world scenes of inland waterways using various modalities, including lidar, stereo cameras, millimeter-wave radar, GPS, and inertial measurement units (IMUs). Based on the requirements and challenges in the perception and navigation of USVs for inland waterways, we build benchmarks for simultaneous localization and mapping (SLAM), stereo matching, and water segmentation. We evaluate common algorithms for the above tasks to determine the influence of unique inland waterway scenes on algorithm performance. Our dataset and the development tools are available online at https://www.orca-tech.cn/datasets.html.
翻译:无人驾驶的地表车辆(USV)具有巨大的价值,因为它们有能力在水面上执行危险和耗时的任务。最近,用于内陆水道的USV吸引了越来越多的注意力,因为它们可能被用于自主监测、运输和清洁;然而,与在公海航行不同,内陆水道景象带来的挑战,如障碍的复杂分布、全球定位系统信号拒绝环境、银行侧面结构的反射和水面的雾等,都阻碍了在内陆水道应用USV。为解决这些问题和激发相关研究,我们引进了USVInland,这是内河水道USV的多传感器数据集。USVInland的收集工作跨越了不同真实世界内陆水道景象的26公里的轨迹,使用了各种模式,包括Lidar、立体相机、毫米波雷达、全球定位系统和惯性测量装置。基于对内陆水道的感知和导航的要求和挑战,我们在内陆水道上同时进行本地化和测绘(SLISAM)、固定式的在线算法和我们所具备的在线数据分析工具。