In this paper, the monotone submodular maximization problem (SM) is studied. SM is to find a subset of size $\kappa$ from a universe of size $n$ that maximizes a monotone submodular objective function $f$. We show using a novel analysis that the Pareto optimization algorithm achieves a worst-case ratio of $(1-\epsilon)(1-1/e)$ in expectation for every cardinality constraint $\kappa < P$, where $P\leq n+1$ is an input, in $O(nP\ln(1/\epsilon))$ queries of $f$. In addition, a novel evolutionary algorithm called the biased Pareto optimization algorithm, is proposed that achieves a worst-case ratio of $(1-\epsilon)(1-1/e)$ in expectation for every cardinality constraint $\kappa < P$ in $O(n\ln(P)\ln(1/\epsilon))$ queries of $f$. Further, the biased Pareto optimization algorithm can be modified in order to achieve a worst-case ratio of $(1-\epsilon)(1-1/e)$ in expectation for cardinality constraint $\kappa$ in $O(n\ln(1/\epsilon))$ queries of $f$. An empirical evaluation corroborates our theoretical analysis of the algorithms, as the algorithms exceed the stochastic greedy solution value at roughly when one would expect based upon our analysis.
翻译:本文研究单调子模式最大化问题。 SM 是要从一个规模的宇宙找到一个规模为$\ kappa$的子集, 这个规模为$n美元, 使单调子模式目标功能最大化。 我们用新颖的分析显示, Pareto 优化算法在每种基质限制情况下,预期最差比例为$(1-\ epsilon)(1- 1/ e) $ < P$, 其中P\ leq n+1美元是一种投入, 美元为O (n\ ln(1/\ epsilon), 美元为美元。 此外, 新的进化算法称为偏差的Pareto优化算法, 提议实现最坏比例为$(1-\ epsilon)(1- e) $( kapppa) $ < P$ (n\ ln( p)\ lequ) 美元为美元。 此外, 偏差的 Parestialto adlogalationalalational_alal $\ rialal dequilabal deal lax passalisalisalisalisalislation as pas lax pas lax pas pas pas pas pas) robalisalisalisalisalisalisalisaltial res a res a res a res a res a res a restialisaltialtialtialtial res ax res a robaltialtialtialtialtialtial res a res a res a res a res a res a res a res a res a res a res a robaltialtial robal res a res a res a res a res a res res res res res res res res res res res res res res res res res res res res res res res res res res res res res restialtialtial res res res res res a a a a res res res res