In recent years, the use of deep learning in language models gained much attention. Some research projects claim that they can generate text that can be interpreted as human-writing, enabling new possibilities in many application areas. Among the different areas related to language processing, one of the most notable in applying this type of modeling is programming languages. For years, the Machine Learning community has been researching this software engineering area, pursuing goals like applying different approaches to auto-complete, generate, fix, or evaluate code programmed by humans. Considering the increasing popularity of the Deep-Learning-enabled language models approach, we detected a lack of empirical papers that compare different deep learning architectures to create and use language models based on programming code. This paper compares different neural network architectures like AWD-LSTMs, AWD-QRNNs, and Transformer while using transfer learning and different tokenizations to see how they behave in building language models using a Python dataset for code generation and filling mask tasks. Considering the results, we discuss each approach's different strengths and weaknesses and what gaps we find to evaluate the language models or apply them in a real programming context.


翻译:近些年来,语言模型中深层学习的使用引起了人们的极大关注。一些研究项目声称,它们能够产生可被解释为人文写作的文本,从而在许多应用领域促成新的可能性。在与语言处理有关的不同领域,在应用这种类型的建模中最显著的一个领域是编程语言。多年来,机器学习社区一直在研究这个软件工程领域,追求不同的目标,例如对自动完成、生成、修正或评估人类编程的代码采用不同的方法。考虑到由深学习驱动的语言模型方法越来越受欢迎,我们发现缺乏经验文件,比较不同的深层次学习结构,以创建和使用基于编程代码的语言模型。本文比较了不同的神经网络结构,如AWD-LSTMs、AWD-QNNS和变形器,同时使用传输学习和不同符号来观察他们如何使用Python数据集构建语言模型来生成代码和填补面具任务。我们讨论了每种方法的不同优势和弱点,以及我们发现在评价语言模型或将其应用到什么差距,例如AWD-LSTM、AW-Q-QNNNNN和变形模型的实际编程。

0
下载
关闭预览

相关内容

【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2018年11月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
VIP会员
相关VIP内容
相关资讯
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2018年11月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员