In this paper, we study a multi-cluster Wireless Powered Communication Network (WPCN) where each cluster of users cooperate with a Cluster Head (CH) and a Hybrid Access Point (HAP). All users are equipped with multiple antennas. This HAP employs beamforming to deliver energy to the users in the downlink phase. The users of each cluster transmit their signals to the HAP and to their CHs in the uplink phase. In the next step the CHs first relay the signals of their cluster users and then transmit their own information to the HAP. We design the Energy Beamforming (EB) matrix, transmit covariance matrices of the users and allocate time slots to energy transfer and cooperation phases by optimizing the max-min and sum throughputs of the network. Our optimization is a non-convex problem which we break it to two non-convex sub-problems and solve them by employing the Alternating Optimization (AO) and the Minorization-Maximization (MM) technique. We recast the resulting sub-problems as a convex Second Order Cone Programming (SOCP) and a Quadratic Constraint Quadratic Programming (QCQP) for the max-min and sum throughput maximization problems, respectively. We take into account the consider imperfect Channel State Information (CSI) and non-linearity in Energy Harvesting (EH) circuits. Using numerical examples, we explore the impact of the proposed cooperation as well as optimal placement of CHs under various setups.
翻译:在本文中,我们研究一个多集群无线无线通信网络(WPCN),每个用户群都与一个集群头(CH)和一个混合接入点(HAP)合作。所有用户都配备了多天线。HAP使用光束成形向下行阶段的用户提供能源。每个集群的用户在上行阶段将信号传送给HAP和他们的CH。下一步,CH首先传递其分组用户的信号,然后将自己的信息传送给HAP。我们设计了能源联盟(EEB)矩阵,将用户的变量矩阵传送,并将时间档分配给能源转移和合作阶段,为此优化了网络的最大和总量的透量。我们的优化是一个非碳x问题,我们把它分解成两个非碳分质分质问题。我们用“优化优化组合”(AO)和“微量化(MMM)技术,我们将由此形成的分流的次质(EBRE-C)的分流分析模型分别作为“最佳的C”分类和“Oral-Q”(我们将“最佳的“C”分类”的“优化的“Oral-cal-C”的“Oral-ral-Q”的“Oral-ral-ral化”的“Oal-s-al-al-al-al-al”分类的“我们分别作为“我们为“O”的“O-al-al-al-acal-ral-al-al-al-al-al-ac”的“Oc”的“我们的“我们的“Ocal化”的“Ocal-s-s-s-al-al-s-s-s-s-s-s-s-s-s-s-s-s-s-s-al-al-al-al-al-al-al-al-al-al-ac-ac-ac-al-al-ac-al-s-s-acal-s-al-al-al-s-s-s-s-s-s-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-s-s”