Context: Modern software systems (e.g., Apache Spark) are usually written in multiple programming languages (PLs). There is little understanding on the phenomenon of multi-programming-language commits (MPLCs), which involve modified source files written in multiple PLs. Objective: This work aims to explore MPLCs and their impacts on development difficulty and software quality. Methods: We performed an empirical study on eighteen non-trivial Apache projects with 197,566 commits. Results: (1) the most commonly used PL combination consists of all the four PLs, i.e., C/C++, Java, JavaScript, and Python; (2) 9% of the commits from all the projects are MPLCs, and the proportion of MPLCs in 83% of the projects goes to a relatively stable level; (3) more than 90% of the MPLCs from all the projects involve source files in two PLs; (4) the change complexity of MPLCs is significantly higher than that of non-MPLCs; (5) issues fixed in MPLCs take significantly longer to be resolved than issues fixed in non-MPLCs in 89% of the projects; (6) MPLCs do not show significant effects on issue reopen; (7) source files undergoing MPLCs tend to be more bug-prone; and (8) MPLCs introduce more bugs than non-MPLCs. Conclusions: MPLCs are related to increased development difficulty and decreased software quality.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员