Community detection in network analysis is an attractive research area recently. Here, under the degree-corrected mixed membership (DCMM) model, we propose an efficient approach called mixed regularized spectral clustering (Mixed-RSC for short) based on the regularized Laplacian matrix. Mixed-RSC is designed based on an ideal cone structure of the variant for the eigen-decomposition of the population regularized Laplacian matrix. We show that the algorithm is asymptotically consistent under mild conditions by providing error bounds for the inferred membership vector of each node. As a byproduct of our bound, we provide the theoretical optimal choice for the regularization parameter {\tau}. To demonstrate the performance of our method, we apply it with previous benchmark methods on both simulated and real-world networks. To our knowledge, this is the first work to design spectral clustering algorithm for mixed membership community detection problem under DCMM model based on the application of regularized Laplacian matrix.
翻译:在网络分析中,社区探测是最近一个有吸引力的研究领域。在这里,根据经程度修正的混合成员(DCMM)模式,我们建议一种高效方法,即基于正规化的拉普拉西亚矩阵的混合常规光谱聚集(混合-RSC为短),混合RSC是根据人口正常化的拉普拉西亚矩阵成像变异变种的理想锥体结构设计的。我们表明,算法在温和条件下,通过为每个节点的推断成员矢量提供错误界限,在微弱条件下是无症状的。作为我们约束的副产品,我们为正规化参数提供理论上的最佳选择。为了展示我们的方法的性能,我们用以前的基准方法在模拟网络和现实世界网络上加以应用。据我们所知,这是在应用正规化的拉帕莱西亚矩阵模型模型的基础上为混合成员社区探测问题设计光谱组合算法的首项工作。