In this paper we describe the testing procedure for assessing the statistical significance of treatment effect under the experimental conditions of baseline imbalance across covariates and attrition from the survey, using the permutation tests proposed by Freedman and Lane (1983) and Romano and Wolf (2016). We discuss the testing procedure for these hypotheses based on a linear regression model and introduce the new Stata command [R] permtest for the implementation of the permutation test in Stata. Moreover, we investigate the finite-sample performance as well as the statistical validity of the test with a Monte Carlo simulation study in which we examine the empirical size and power properties under the conditions of baseline imbalance and attrition for a fixed number of permutation steps.
翻译:在本文中,我们用Freedman和Lane(1983年)以及Romano和Wolf(2016年)提议的变异试验,说明在调查中共差和自然减员基线不平衡试验条件下评估治疗效应的统计重要性的测试程序,我们根据线性回归模型讨论这些假设的测试程序,并采用新的Stata指令(R),以便在斯塔塔实施变异测试。此外,我们用蒙特卡洛模拟研究调查了测试的有限抽样性表现和统计有效性,我们在该研究中根据基准不平衡和自然减员条件,对固定数量的变异步骤的经验规模和功率特性进行了审查。