We propose a neural network-based approach to the homogenization of multiscale problems. The proposed method uses a derivative-free formulation of a training loss, which incorporates Brownian walkers to find the macroscopic description of a multiscale PDE solution. Compared with other network-based approaches for multiscale problems, the proposed method is free from the design of hand-crafted neural network architecture and the cell problem to calculate the homogenization coefficient. The exploration neighborhood of the Brownian walkers affects the overall learning trajectory. We determine the bounds of micro- and macro-time steps that capture the local heterogeneous and global homogeneous solution behaviors, respectively, through a neural network. The bounds imply that the computational cost of the proposed method is independent of the microscale periodic structure for the standard periodic problems. We validate the efficiency and robustness of the proposed method through a suite of linear and nonlinear multiscale problems with periodic and random field coefficients.
翻译:我们建议一种基于神经网络的多尺度问题的同质化方法。拟议方法使用一种不含衍生物的培训损失的配方,它包括布朗尼人行尸,以寻找多尺度PDE解决方案的宏观描述。与其他基于网络的多尺度问题方法相比,拟议方法没有设计手工制造神经网络结构,也没有计算同质系数的细胞问题。布朗尼人行尸的勘探区影响到整个学习轨迹。我们通过神经网络确定分别捕捉当地多种和全球性同质解决方案行为的微观和宏观时间步骤的界限。这些界限意味着拟议方法的计算成本独立于标准周期问题的微观周期结构。我们通过定期和随机字段系数的线性和非线性多尺度问题组合来验证拟议方法的效率和稳健性。