We present ShaDDR, an example-based deep generative neural network which produces a high-resolution textured 3D shape through geometry detailization and conditional texture generation applied to an input coarse voxel shape. Trained on a small set of detailed and textured exemplar shapes, our method learns to detailize the geometry via multi-resolution voxel upsampling and generate textures on voxel surfaces via differentiable rendering against exemplar texture images from a few views. The generation is interactive, taking less than 1 second to produce a 3D model with voxel resolutions up to 512^3. The generated shape preserves the overall structure of the input coarse voxel model, while the style of the generated geometric details and textures can be manipulated through learned latent codes. In the experiments, we show that our method can generate higher-resolution shapes with plausible and improved geometric details and clean textures compared to prior works. Furthermore, we showcase the ability of our method to learn geometric details and textures from shapes reconstructed from real-world photos. In addition, we have developed an interactive modeling application to demonstrate the generalizability of our method to various user inputs and the controllability it offers, allowing users to interactively sculpt a coarse voxel shape to define the overall structure of the detailized 3D shape. Code and data are available at https://github.com/qiminchen/ShaDDR.
翻译:暂无翻译