Finding extended hydrodynamics equations valid from the dense gas region to the rarefied gas region remains a great challenge. The key to success is to obtain accurate constitutive relations for stress and heat flux. Recent data-driven models offer a new phenomenological approach to learning constitutive relations from data. Such models enable complex constitutive relations that extend Newton's law of viscosity and Fourier's law of heat conduction, by regression on higher derivatives. However, choices of derivatives in these models are ad-hoc without a clear physical explanation. We investigated data-driven models theoretically on a linear system. We argue that these models are equivalent to non-linear length scale scaling laws of transport coefficients. The equivalence to scaling laws justified the physical plausibility and revealed the limitation of data-driven models. Our argument also points out modeling the scaling law explicitly could avoid practical difficulties in data-driven models like derivative estimation and variable selection on noisy data. We further proposed a constitutive relation model based on scaling law and tested it on the calculation of Rayleigh scattering spectra. The result shows data-driven model has a clear advantage over the Chapman-Enskog expansion and moment methods for the first time.


翻译:从密气区到稀有气体区,寻找从密集气区到稀有气区的延伸流体动力等方程式仍然是一项巨大的挑战。成功的关键在于获得压力和热通量的准确结构关系。最近的数据驱动模型为从数据中学习结构关系提供了一种新的线性方法。这些模型使得复杂的结构关系能够通过对较高衍生物的回归,将牛顿的粘度法和Fourier的热导法法加以扩展。然而,这些模型中衍生物的选择是临时的,没有明确的物理解释。我们从理论上对线性系统中的数据驱动模型进行了调查。我们认为,这些模型相当于非线性长度的运输系数缩放法。与法律的等同,证明有形的可辨识性,并揭示了数据驱动模型的局限性。我们的论点还明确指出,通过将比例法建模法明确用于数据驱动模型中的实际困难,例如衍生物估计和对噪音数据的可变选择。我们进一步提议了一个基于缩放法的构成关系模型,并测试了Rayle 散射光谱的计算。结果显示,数据驱动模型首次显示数据模型对查普片扩张方法具有明显的优势。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【IJCAI2020】TransOMCS: 从语言图谱到常识图谱
专知会员服务
35+阅读 · 2020年5月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
盘一盘 Python 系列 8 - Sklearn
平均机器
5+阅读 · 2019年5月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
已删除
将门创投
6+阅读 · 2019年1月11日
人工智能 | NAACL-HLT 2019等国际会议信息6条
Call4Papers
4+阅读 · 2018年10月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
0+阅读 · 2022年1月23日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【IJCAI2020】TransOMCS: 从语言图谱到常识图谱
专知会员服务
35+阅读 · 2020年5月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
盘一盘 Python 系列 8 - Sklearn
平均机器
5+阅读 · 2019年5月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
已删除
将门创投
6+阅读 · 2019年1月11日
人工智能 | NAACL-HLT 2019等国际会议信息6条
Call4Papers
4+阅读 · 2018年10月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员