Designing or learning an autonomous driving policy is undoubtedly a challenging task as the policy has to maintain its safety in all corner cases. In order to secure safety in autonomous driving, the ability to detect hazardous situations, which can be seen as an out-of-distribution (OOD) detection problem, becomes crucial. However, most conventional datasets only provide expert driving demonstrations, although some non-expert or uncommon driving behavior data are needed to implement a safety guaranteed autonomous driving platform. To this end, we present a novel dataset called the R3 Driving Dataset, composed of driving data with different qualities. The dataset categorizes abnormal driving behaviors into eight categories and 369 different detailed situations. The situations include dangerous lane changes and near-collision situations. To further enlighten how these abnormal driving behaviors can be detected, we utilize different uncertainty estimation and anomaly detection methods to the proposed dataset. From the results of the proposed experiment, it can be inferred that by using both uncertainty estimation and anomaly detection, most of the abnormal cases in the proposed dataset can be discriminated. The dataset of this paper can be downloaded from https://rllab-snu.github.io/projects/R3-Driving-Dataset/doc.html.


翻译:设计或学习自主驾驶政策无疑是一项具有挑战性的任务,因为该政策必须在所有转角情况中保持其安全性。为了确保自主驾驶的安全,发现危险情况的能力变得至关重要,因为危险情况可被视为分配外(OOOD)检测问题。然而,大多数常规数据集仅提供专家驾驶演示,尽管需要一些非专家或异常的驾驶行为数据来执行安全保障自主驾驶平台。为此,我们提出了一个新型数据集,称为R3驾驶数据集,由具有不同品质的驾驶数据组成。数据集将不正常驾驶行为分为8类和369种不同的详细情况。这些情形包括危险航道变化和接近collisiion的情况。为了进一步说明如何发现这些不正常驾驶行为,我们使用不同的不确定性估计和异常检测方法来向拟议的数据集提供。根据拟议的试验结果,可以推断,通过使用不确定性估计和异常检测,可以对拟议数据集中的大多数异常情况加以区分。本文的数据集可以从 https://rllab-snu.givat-Drgius3.io/proismas下载。

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
【经典书】模式识别导论,561页pdf
专知会员服务
81+阅读 · 2021年6月30日
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
25+阅读 · 2021年4月2日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
已删除
将门创投
4+阅读 · 2018年6月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年11月9日
Arxiv
12+阅读 · 2021年6月21日
VIP会员
相关资讯
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
已删除
将门创投
4+阅读 · 2018年6月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员